The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain.

نویسندگان

  • R H Lorentsen
  • J H Graversen
  • N R Caterer
  • H C Thogersen
  • M Etzerodt
چکیده

Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The plasminogen binding site of the C-type lectin tetranectin is located in the carbohydrate recognition domain, and binding is sensitive to both calcium and lysine.

Tetranectin, a homotrimeric protein belonging to the family of C-type lectins and structurally highly related to corresponding regions of the mannose-binding proteins, is known specifically to bind the plasminogen kringle 4 protein domain, an interaction sensitive to lysine. Surface plasmon resonance and isothermal calorimetry binding analyses using single-residue and deletion mutant tetranecti...

متن کامل

Immunogenic and Protective Potentials of Recombinant Receptor Binding Domain and a C-Terminal Fragment of Clostridium botulinum Neurotoxin Type E

Clostridium Botulinum Type E neurotoxin heavy chain consists of two domains: the translocation domain asthe N-terminal half and the binding domain as the Cterminal half (Hc). One effective way to neutralize botulinum neurotoxin is to inhibit binding of this toxin to neuromuscular synapses with antibodies against binding domain. Two synthetic genes, coding for Hc (the full length binding d...

متن کامل

Designing a new tetrapeptide to inhibit the BIR3 domain of the XIAP protein via molecular dynamics simulations

The XIAP protein is a member of apoptosis proteins family. The XIAP protein plays a central role in the inhibition of apoptosis and consists of three Baculoviral IAP Repeat domains. The BIR3 domain binds directly to the N-terminal of caspase-9 and therefore it inhibits apoptosis. N-terminal tetrapeptide region of SMAC protein can bind to BIR3, inhibit it and subsequently induce apoptosis. In th...

متن کامل

Determination of the Binding Constant of Terbium-Transferrin

Apotransferrin (apo Tf)  in 0.1 M N-(2hydroxyethyl)piperazine-N2-ethanesulfanic acid at 25 ˚C  and pH 7.4 has been titrated with acidic solution of Tb3+. The binding of Tb3+ at  the two specific metal-binding sites of transferrin was followed from the changes in the difference UV spectra at 245 nm. The molar absorptivity per binding site for Tb3+...

متن کامل

The N-terminal carbohydrate recognition site of the cation-independent mannose 6-phosphate receptor.

The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays a critical role in the trafficking of newly synthesized mannose 6-phosphate-containing acid hydrolases to the lysosome. The receptor contains two high affinity carbohydrate recognition sites within its 15-domain extracytoplasmic region, with essential residues for carbohydrate recognition located in domain 3 and domain 9...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 347 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2000